Pattern Constancy Demonstration of Retinex/Visual Servo (RVS)
Image Processing

Smart Visual Awareness System (SVAS)
Subtask of External Hazard Detection
Integrated Intelligent Flight Deck Technology
Aviation Safety Program

Co-Investigators: Zia-ur Rahman* (Old Dominion University), Daniel J.
Jobson *(NASA-LaRC), and Glenn A. Woodell (NASA-LaRC)

+Dr. Rahman's contribution was funded by
NASA Aviation Safety NRA#NNLO7AA02A

*SVA Subtask Team Leader

The key ideas of this subtask are:

1) Previously developed real-time generic image enhancement methods,
retinex/visual servo (RVS) image processing, were found to be approaching a
canonical visual representation for arbitrary scenes and arbitrary imaging and
sensor conditions - changing lighting and atmospheric conditions such as turbid
imaging, and sensor exposure variations.

2) Retinex/visual servo methods needed to be optimized for maximum stability of
this canonical representation and the canonical hypothesis itself needed to be
demonstrated experimentally. Together, these research efforts provide the
necessary foundation for the use of the RVS as a generic, enabling,
computational front end for subsequent higher level visual processing which
performs visual tasks such as pattern recognition. This combined processing is
then directed to achieve automatic external hazard detection for future avionic
systems that will increasingly rely on smart sensor/processor technology to
augment the pilot’s situational awareness. The hazards amenable to visual
information processing solutions are: runway and runway hazard detection,
terrain hazard detection, and mid-collision hazard detection.

3) To demonstrate the canonical representation performance of the optimized
RVS, we have studied a variety of time series image classes and carried them
through RVS processing and then on to detected edge patterns to confirm that
canonical visual representation leads to pattern constancy in the pattern domain
of higher level processing. These experimental results yield a reasonably
comprehensive understanding of the performance envelope which can be



accomplished, and scientific insights into the intrinsic limits on this
performance.

4) Beyond the results here, we will be exploring both generic and specialized
higher level processing methods which have the potential to achieve automated
aviation hazard detection of the kinds listed above.

The RVS processing is described and its performance demonstrated as an automatic,
powerful, and generic image enhancement method in previous publications (Ref. 2, 3, 4,
6, 11, 13-16, 19, 23-25 among many others in our collection of publications at
http://dragon.larc.nasa.gov/retinex/background/retpubs.html) which include real-time
video hardware implementations in digital signal processors (DSP). These later reports
support the idea of this technology being readily embedded in future smart aviation
imaging systems as a computational platform for higher level autonomous, external
hazard detection visual processing. For the present purposes, the RVS processing, at its
core, should be understood as a basic transformation of images from being a map of
relative light intensity values to a map of the logarithm of spatial and spectral scene
relationships- i.e. a compressed map of context information.

I. Approach

In order to build a comprehensive demonstration of canonical representation and
pattern constancy, we examine time series imagery of the same scenes under widely
varying imaging and sensor exposure conditions. Our intent is to demonstrate that any
specific scene can be encountered again and again with widely changing extraneous
variations and still produce a processed result which maintains a high degree of visual
representation consistency and pattern constancy. Time series data sets that were readily
at hand are:

1) High quality webcam data sets

These data are from reasonably high quality web cams and are high quality lossy
JPEG image formats. Noise will be seen to be the performance limiting factor
except for the San Marino webcam where lossier JPEG coding introduces block
artifacting as the pattern constancy limit rather than sensor noise. These data
extend the Mars data set to terrestrial landscapes and are rich in temporal
variations due to weather, lighting, and even seasonal variations. So where the
Mars data is rich in locational and scene diversity, the web cams are rich in
temporal depth but sparse in locational diversity. The locations included are Paris,
France metropolitan panorama, San Marino, Italy (a mix of natural and city
terrain on mountain ridge), and Vancouver BC, Canada downtown skyline with
highly variable weather. Other sites also included are two Italian mountain village
webcams where lighting variations are accentuated by mountain shadows.

2) Mars Odyssey orbital imagery of the surface of the planet




The key attributes of this data are:
1) Rich diversity of terrain features (and patterns)

2) Time series of two to six images per scene are available and represent the
scene over highly arbitrary lighting and sensor exposure variations

3) The data are high quality lossless TIF, GIF, or PNG image formats. This
data set is limited in the number of time series/location available since the
primary mission of Mars Odyssey was planetary survey rather than the
intensive study of selected locations on the surface. This data is also
limited to essentially no weather or turbidity variations. So the data set is
rich in locations but poor in time series for each location, and lacking in
terrestrial weather variations. While image quality is limited by noise
rather than lossy image coding artifacts, this noise is not always stationary
and frequently can be seen to be afflicted with periodic variations.

3) Fog sequence at NASA LaRC Aircraft Landing Dynamics Facility (ALDF)

In order to augment data readily at hand, we also took a sequence of morning fog
clearing images at Langley's ALDF. This gave us a well-characterized sequence
of turbidity variation from image data we acquired and had full control over the
image acquisition process. These image sequences were acquired with a Canon
EOS-1 Mark Il N digital camera.

Taken together, the above data sets comprise a reasonably comprehensive array of
highly arbitrary scene diversity, imaging lighting and turbidity variations, and
sensor exposure variations. The latter is especially emphatic for the Mars Odyssey
where we often see images in a series taken at the same sun angle (judged by
crater shadows) but with wildly different sensor exposures and resulting feature
contrasts ranging from invisible to high contrast.
A basic summary description of all data sets is:
A) High quality web cams (high quality lossy JPEG image formats)
Italy-

1. Unknown mountain village- 1 location, 8 time series spanning one
day/night cycle

2. Pellegrino- 1 location, 15 time series spanning one day/night cycle-
bad weather

3. San Marino- 1 location, 40 time series over ~ 1 month- very little bad



weather- mostly sun angle variations in lighting

Vancouver BC, Canada- 1 location, 49 time series over ~ 1 month- lots of
bad weather and highly variable weather

Paris, France- 1 location, ~50 time series over ~ 1 month- lots of weather
variations- rain/fog/haze

In addition, we processed image data sets from some low quality webcams. These
were severely limited in image quality and enhancement potential by the presence
of emphatic block artifacting due to very lossy image coding. However we do
show some data for Salzberg, Austria (castle/airport) with very poor visibility and
highly variable lighting/fog conditions, because it does still show the processing
demonstrably pushing toward canonical visual representation despite the very
serious limits imposed by such lossy image coding.

B) Mars Odyssey- >1500 locations on Mars surface comprised of very rich
terrain diversity- 2-6 time series for each location usually acquired years apart in
time. Loseless TIF, GIF, or PNG image formats. The plethora of time series data
available for the Mars surface allowed us to tease apart the extraneous variables
so that we could examine the individual effects of sun angle, sensor exposure, and
signal-to-noise variabilities. This separation of variables is shown in separate sub-
galleries in the Mars Odyssey results gallery.

C) Fog sequence- Thirteen images acquired in a time sequence as morning fog
was clearing.

1. Results (see galleries)

We have selected for the gallery, samples of this data set which represent typical
performance as well as examples of cases at the extremes of performance, namely very
low light levels, poor visibility turbidity, and very poor sensor exposures. The typical
performance is usually highly redundant so we are not showing as many of these
excellent performance cases as we could, but concentrating on the cases approaching
performance limits in order to illustrate these limiting cases and develop insights into the
mechanisms of these limits.

Discussion of results-

Both enhancement and canonical representation performance as well as pattern constancy
performance are quite good over a wide range of extraneous imaging variabilities but at
the extreme are limited by sensor noise (or lossy image coding artifacts if present). Lesser
limits on constancy and other performances are variable shadow edges, loss of small
detail in small shadows, and any losses due to signal saturation and clipping (such
information is irretrievably lost). With respect to ultimate pattern recognition on the Mars
pattern constancy data sets, we do see that certain scenes encountered on Mars are



somewhat featureless or granular. This sort of textural pattern may lack sufficient
structural uniqueness to support an unambiguous pattern recognition computation. Also
in some rarer cases, more rolling terrains are less pattern-constant with sun angle
changes, however the pattern constancy holds well for scene elements with high relief
such as craters, canyons, and mountain ridges. On the whole, pathological cases of
pattern inconstancy are very rarely occurring.

I1l. Summary of Visual Judgments of Pattern Constancy for the Very Diverse Mars
Odyssey Data Sets:

The overall results of visual judgment for 369 of the >1500 cases are:

70% likely to strongly correlate
14% marginal correlation
16% poor to no correlation

These data are therefore for a large sample of the total data set.

Again, the reasons for the marginal to no correlation are poor s/n ratio, featureless or
granular textural terrains, or scene change such as reorientation of dune pattern after a
storm, or melting and formation of ice patterns obscuring terrain features in polar regions.
That being said, the vast majority of the poorly matched cases are due to sensor noise
limits- a fundamental and unavoidable limit for any imaging system.

Without image enhancement, these statistics would be heavily skewed to marginal or no

correlation classes. So pattern constancy is demonstrated to a significant degree down to
the fundamental limit of sensor noise.

IV. Visualizing Pattern Constancy (see gallery)

In order to give a more concrete sense of pattern constancy, we have included a gallery
where time series pairs of detected edge patterns are overlaid with t; in blue and t; in red.
The common pattern elements then appear magenta and can readily be distinguished from
the non-matching edge elements which remain either blue or red and clearly designate
from which of the non-matching edge element image pairs each comes from.

V. A Cursory Correlation Analysis of Time Series Data (see gallery)

While it is logistically impossible to precisely spatially register such a large volume of
time series data as we have shown here in the galleries, we did want to carry the visual
assessment of pattern constancy on to its computational pattern recognition impact.
Therefore we ran a new terrestrial time series where camera position was absolute so that
all data was intrinsically registered and correlation coefficients could readily be
computed. In addition, we were also able to register some of the Paris panorama webcam
images and the fog sequence shown earlier. The computation of a correlation coefficient



gives us quantitative insight into the the performance of the enhancement processing and
its ability to boost the likelihood of a valid pattern recognition event. The basic process
which these data describe is that a good edge representation of a scene is stored in
memory and the attempt is made to correlate this edge image with others coming into the
processing, from real-time sensor data for example. We hope to also assess the effect of
scene content and context on pattern constancy performance by using time series data
from rather different scenes.

From experiments with increasing injections of noise in test images, we found that the
noise limit for correlation is r=0.00-0.04 and for non-matching patterns range from
r=0.00 to r=0.05. This supports the idea that a significant correlation value can be as low
as ~0.1 or even less, perhaps down to 0.06. With this in mind, we can evaluate the three
sets of time series correlation data.

A Residential Street Scene

In addition, we did a residential street scene correlation analysis of time series
images ranging from near saturation through normal exposures all the way down
to near darkness. This experiment and the results are given below.

For a full sequence of time series of images from a residential street scene,

we computed the behavior of the correlation coefficient over a wide array of
varying conditions- near saturation through normal exposures with variable
lighting (sun angle mostly, down to advancing nightfall with increasing sensor
noise to its extreme limits. The correlation coefficient is computed for both un-
enhanced edge images and the enhanced edge images to quantify the benefit of
enhancement, per se, and to quantify the degree of pattern constancy that is
maintained to “recognize” this specific scene with a computer under these highly
arbitrary imaging conditions.

The chronological order of the images has been rearranged to show the trend from
near saturation down to deepening night. The best enhanced visual representation
of the scene is chosen to define the edge image to correlate against all the other
edge images- both un-enhanced and enhanced. R is the correlation coefficient
computed as the covariance divided by the product of the two separate standard

deviations.

Notes File Name R (un-enhanced) R (enhanced)
almost complete saturation house2-1ee 0.00000 0.04
decreasing saturation house2-2ee 0.037 0.30
house2-3ee 0.22 0.50
......... house2-4ee 0.43 0.62
house2-5ee 0.49 0.72
near normal exposure house2-6ee 0.48 0.79

best visual representation  house2-7ee 0.50 1.0



house2-8ee 0.41 0.69

**Major scene change (dumpster moved to block a major foreground pattern in previous
scene)
Shifting to new correlation baseline image

twilight begins house2-9ee (0.16) 0.48 (0.17) 1.0
darkness deepens house2-10ee 0.31 0.67
increasing noise house2-19ee 0.089 0.43
house2-18ee 0.037 0.35
...... house2-17ee 0.004 0.23
house2-16ee -0.003 0.14
house2-15ee -0.003 0.07
house2-14ee -0.003 0.03
nearly all noise house2-11ee -0.001 0.02

NOTE: From previous experiments the noise limit for correlation is 0.0-0.04 and the
mismatch detection limit is for R of 0.00-0.05. So for R>0.05 we seem to have a
significant recognition or detection event. If so, then the RVS processing extended the
“recognition” events from house2-2ee all through house2-15ee- that is, from very bright,
near saturation to very deep twilight, almost black

B. Paris Panorama Webcam

While the zoom and view position of this camera did change somewhat over time,
which made spatial registration unmanageable, we were able to register enough e
xamples to cover a very wide range of lighting conditions including down to the
noise limit at night. These data, like the previous set, are not arranged in
chronological order, but rather to show the trend for progressive declines in
enhanced image quality.

Notes File Name R (un-enhanced) R (enhanced)

paris02ee 0.57 1.0
parisl7ee 0.19 0.33
paris40ee 0.24 0.32
parisl5ee 0.26 0.30
paris18ee 0.15 0.27
paris33ee 0.16 0.25
parisO5ee 0.14 0.23

extreme lighting*  paris38ee 0.08 0.23
paris34ee 0.16 0.22

very high noise parisOlee 0.03 0.03

*near-sunset glare condition



These data exhibit several interesting trends. Foremost is the lower enhanced R
values compared to the previous residential street scene. A careful examination of
the data showed that while there is some residual spatial mis-registration of these
time series, most of the lower R values are due to scene context and content.
Unlike the residential street scene, this panorama is composed of much more fine
structure and as such is more subject to pattern inconstancy due to local shadow
changes as a result. Such local shadow changes are not removed by the RVS
processing. The lower correlation values reflect this and quantify the “core”
pattern constancy achieved by the RVS processing for the class of scene. The
RVS processing is clearly maintaining a significant correlation into very poor
visibility conditions (paris38ee) and achieves a greater confidence overall in
correlation than the un-enhanced imagery. Ultimately, both enhanced and un-
enhanced images run into the noise limit (parisOlee).

C. ALDF Fog Sequence (see previous gallery of this sequence)

This sequence of fog clearing at Langley's ALDF was discussed in a previous
section. For the purposes of correlation coefficient computation, we reversed the
chronological order so the beginning frame is the least turbid image and
enhancement and the remaining image/enhancement pairs reflect increasing
turbidity. While the images and enhancements were carefully registered spatially,
we did note some minimal residual misalignment of one pixel in edge space.
Therefore the correlation coefficients for perfect alignment may be slightly higher
that the numbers that are given below:

Notes File Name R (un-enhanced) R (enhanced)
fairly clear ~ fog0213ee 0.29 1.0
increasing turbidity fog0212ee 0.21 0.60
.......... fog0211ee 0.19 0.59
fog0210ee 0.14 0.56

fog0209ee 0.16 0.41

fog0208ee 0.14 0.38

fog0207ee 0.065* 0.30

fog0206ee 0.017 0.30

fog0205ee 0.023 0.24

fog0204ee 0.090 0.15

fog0203ee 0.030 0.25

fog0202ee 0.045 0.21

fog0201ee 0.029 0.31

fog0200ee 0.048 0.18

*near detection limit



For these data we see the strongest impact of enhancement on improvement in R
values, as well as the strongest maintenance of high correlation values as poor
visibility deepens.

We also attempted to do correlation studies on Mars Odyssey time series data but
regrettably this proved to be an intractable problem in practical spatial
registration. We can only assume that variable orbital parameters, and arbitrary
non-nadir viewing combined to make spatial registration a problem where spatial
registration varies across the image frames in the time series. As a result, we could
not examine correlation for these data, and this is especially disappointing since
this data is rich in terrain diversity and we could have learned much more about
scene content and context effects of ultimate correlation performance.

VI. D. Experimental Determination of Correlation Coefficient Statistics for Mis-
Matched Edge Pattern Frames

In order to gain insight into the issue of what correlation coefficient values can be
considered to be a significant “detection” or “frame pattern recognition”, we computed R
for a wide array of non-matching image edge patterns. Two data sets were specifically
aerial images taken from aircraft in flight, and these two sets include a large number of
images of airports and runway approaches. Further we computed R for 4 additional data
sets on typical terrestrial scenes chosen for maximum diversity of pattern information.
For all these cases the mean and standard deviation of R were determined. If we assume
that R for mismatching image patterns is a random variable, we can estimate the value of
R above which we can have a high confidence level that a legitimate detection of a
pattern match has occurred. The data is summarized in the following tables:

For the aerial image patterns:
Data set 1 - 36 image samples
R mean = 0.031 R std dev=0.029

Data set 2 - 39 image samples
R mean= 0.028 R std dev=0.015

For the non-aerial images:
Data set 3 - 34 image samples
R mean= 0.005 R std dev=0.025

Data set 4 - 40 image samples
R mean=0.012 R std dev=0.022

Data set 5 — 40 image samples
R mean=0.018 R std dev=0.017

Data set 6 — 40 image samples
R mean=0.021 R std dev=0.026



The large scale averages for all data are (weighting all same, and averaging):
R mean=0.019 R std dev=0.022

The aerial imagery data exhibit a small core pattern similarity that isn't as pronounced in
regular imagery, The closer to zero R mean values for regular images is what we would
expect for any image data set of unrelated imagery. So the aerial images seem to correlate
more even when there is no real pattern match.. To test the validity of the sample size, 3
more sets of 30 images each were used to computer the mean and standard deviation of
R. when these were added into the large scale aggregate values, there was no change in
the mean and only one digit lowering(least significant) in the standard deviation. From
this we conclude that we have probably do have a sufficiently large scale sample to have
a reliable set of values for the mean and standard deviation of R for mis-matching
patterns.

From the large scale averages of mean and standard deviation for R, we can conclude
that:

A mean+2 std dev for a 95% confidence level in a correct match is R>0.063

This value should still be taken as a preliminary estimate whose accuracy should be
improved by larger aggregate sampling if edge frame correlation is a part of an ultimate
automatic hazard detection scheme. As it stands the number does serve well as a useful
baseline estimate which helps to quantify the thinking forward toward defining a future
hazard detection system. The fact that this R value is as low as it is seems to stem from
the extremely high degree of mathematical uniqueness of the pattern structure extracted
from any arbitrary scene with real world complexity.

The value of R>0.05 for significant pattern detection used earlier in the correlation
analysis of times series was determined from less extensive data, but is not that far off
from this larger scale sample. If the slight bias toward more correlation among aerial
pattern images holds up with still larger samples, then a slightly higher R value as a
threshold for significant detection of an edge frame would be justified for the aviation in-
flight imaging case, and similarly may be slightly lower for aviation imaging during
runway taxiing. These R values for significant detection apply just to detecting a match
for an entire edge frame. Determination of significance for specific object hazards is not
yet defined since specific hazards will be a regional pattern within the whole edge frame
and would not be expected to have the same high degree of pattern uniqueness as an
entire scene's extracted edge pattern.

VII. Conclusions

The extensive galleries of time series image enhancements and their associated edge
patterns provide a very broad comprehensive set of data to support the idea that the RVS
processing is a “universal front-end” for approaching canonical visual representation with
real-time processing and enables a high degree of pattern constancy. This serves as a



robust starting point for higher level pattern recognition and the practical implementation
of vision-based automation in aviation safety applications, specifically smart imaging
sensors with built-in real-time external hazard detection. In addition, a preliminary
correlation analysis was presented which quantifies the degree of pattern constancy and
the impact of RVS image enhancement processing on achieving resilient pattern
recognition for aviation sensors of the future. Together these data cover wide ranging
cases of extraneous imaging variables that represent a major obstacle to computer pattern
recognition and demonstrate a very significant diminution of these obstacles in a very
general sense which makes practical generic computer visual pattern recognition a
realistic technology goal for the immediate future.



